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Abstract

We define the oblique warped products and prove their existence. In addition to the Levi-Civita connection we use both the
Schouten–Van Kampen and Vrănceanu connections to study the foliation and curvatures of an oblique warped product. As an
application to cosmology we introduce the oblique Robertson–Walker spacetime and give its basic properties.
c© 2006 Elsevier B.V. All rights reserved.
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0. Introduction

The notion of warped product has been introduced by Bishop and O’Neill [2] as a need for the construction of
a large class of complete manifolds of negative curvature. Also, the warped products turned out to be the standard
spacetime models of the universe as they are the simplest models of neighborhoods of stars and black holes (cf.
O’Neill [4]).

The purpose of the present paper is to define and study a generalization of warped products. Let (E, h) and (F, k)

be two semi-Riemannian manifolds and f be a positive smooth function on E . Then the warped product M = E × f F
is the product manifold E × F endowed with the semi-Riemannian metric

g = π∗h + ( f ◦ π)2σ ∗k,

where π and σ are the projections of E × F onto E and F respectively. One of the main properties of M is that the two
factors (E, h) and (F, k) are orthogonal with respect to g. As a direct consequence of this fact, the warped product
M is filled by two complementary orthogonal foliations: one is totally geodesic and the other is totally umbilical. We
remove the condition for (E, h) and (F, k) to be orthogonal and obtain what we call a generalized warped product.
More precisely, M = E × F( f,L) is a generalized warped product if its semi-Riemannian metric g is given by (1.2).
In particular, for L = 0 we obtain a warped product. For a non-zero L we call M = E × F( f,L) an oblique warped
product.

First, we study the existence of oblique warped products (see Theorem 1.2 and Corollary 1.2). Then we study
the geometry of (M, g) by using the Schouten–Van Kampen and Vrănceanu connections induced by the Levi-Civita
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connection. The existence of the vertical foliation FF and the ( f, k)-associated distribution D enables us to develop
an adapted tensor calculus which includes vertical and horizontal covariant derivatives. By using the above linear
connections we characterize special classes of oblique warped products (cf. Theorems 2.2 and 2.3). Also, an interesting
relation between the sectional curvatures of the distribution D is derived (cf. (3.24)), provided the semi-Riemannian
metric of M is bundle-like for the vertical foliation. Finally, we introduce the oblique Robertson–Walker spacetime
and apply the general theory that we developed in the previous sections to the case when an oblique warped product
carries two complementary orthogonal foliations.

1. Oblique warped products

Let (E, h) and (F, k) be two semi-Riemannian manifolds. Consider the product manifold M = E × F and denote
by π and σ the projections of M onto E and F respectively.

Throughout the paper all manifolds are paracompact, and mappings are smooth (differentiable of class C∞). We
denote by F(M) the algebra of smooth functions on M and by Γ (T M) the F(M)-module of smooth vector fields
on M . We use similar notation for any other manifold or vector bundle. Also, we use the Einstein convention, that is,
repeated indices with one upper index and one lower index denote summation over their range. If not stated otherwise,
throughout the paper we use the following ranges for indices: i, j, k, . . . ∈ {1, . . . , n}; α, β, γ, . . . ∈ {1, . . . , p}.

Now, we denote by DE and DF the distributions on M that are tangent to the foliations whose leaves are
{π−1(p)}p∈E and {σ−1(q)}q∈F respectively. As they are complementary distributions in T M we put

T M = DE ⊕DF . (1.1)

In what follows we denote by the same symbols h and k the semi-Riemannian metrics on DE and DF defined by
the semi-Riemannian metrics h and k on E and F respectively. Thus we have two complementary semi-Riemannian
distributions (DE , h) and (DF , k) on M . So far, two semi-Riemannian structures have been considered on M . They
are the semi-Riemannian product manifold and the warped product (cf. O’Neill [4], pp. 57, 205). A generalization of
these structures is given in the present paper as follows.

Definition 1.1. Let f be a positive smooth function on E and L : Γ (DE ) × Γ (DF ) −→ F(M) be an F(M)-bilinear
mapping. Taking into account (1.1) we denote by PE and PF the projection morphisms of Γ (T M) onto Γ (DE ) and
Γ (DF ) respectively. Then we define the symmetric bilinear mapping g : Γ (T M) × Γ (T M) −→ F(M) by

g(X, Y ) = h(PE X, PE Y ) + ( f ◦ π)2k(PF X, PF Y )

+ L(PE X, PF Y ) + L(PE Y, PF X), ∀X, Y ∈ Γ (T M). (1.2)

If g is a semi-Riemannian metric on the product manifold M = E × F then we put M = E × F( f,L) and call it a
generalized warped product. For L = 0, M becomes a warped product with base E and fibre F . For a non-zero L we
call M = E × F( f,L) an oblique warped product with base E and fibre F . In this case, we also say that (h, k, f, L) is
an oblique warped product structure on E × F .

Next, in order to construct a large class of oblique warped products, we study the existence of a non-zero F(M)-
bilinear mapping L which has been used to define g by (1.2). Let p and n be the dimensions of E and F respectively.
In what follows we take (xα, yi ) as a coordinate system on M = E × F , where (xα), α ∈ {1, . . . , p}, and (yi ),
i ∈ {1, . . . , n}, are coordinate systems on E and F respectively. Then the coordinate transformations on M are given
by

(a) x̃α
= x̃α(x1, . . . , x p), (b) ỹi

= ỹi (y1, . . . , yn). (1.3)

Accordingly, the natural frame fields
{

∂
∂xα , ∂

∂yi

}
and

{
∂

∂ x̃β , ∂
∂ ỹ j

}
are related by

(a)
∂

∂xα
=

∂ x̃β

∂xα

∂

∂ x̃β
, (b)

∂

∂yi =
∂ ỹ j

∂yi

∂

∂ ỹ j · (1.4)

Now, we can prove the following.
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Lemma 1.1. There exists a complementary distribution D to DF in T M, if and only if on the domain of each local
chart on M there exist np smooth functions Di

α , α ∈ {1, . . . , p}, i ∈ {1, . . . , n}, satisfying

Di
α

∂ ỹ j

∂yi = D̃ j
β

∂ x̃β

∂xα
, (1.5)

with respect to the coordinate transformations (1.3).

Proof. First, suppose D is a complementary distribution to DF in T M and take a local frame field
{

Eα, ∂
∂yi

}
on M

such that Eα ∈ Γ (D), α ∈ {1, . . . , p}, and ∂
∂yi ∈ Γ (DF ), i ∈ {1, . . . , n}. Then we put

∂

∂xα
= Cβ

α Eβ + Di
α

∂

∂yi , (1.6)

where Cβ
α and Di

α are smooth functions on a coordinate neighbourhood in M . Thus the matrix of transition from{
Eα, ∂

∂yi

}
to

{
∂

∂xβ , ∂
∂y j

}
is

Λ =

[
Cβ

α 0

Di
α δi

j

]
·

Hence the p × p matrix [Cβ
α ] is non-singular since Λ is so. As a consequence it follows that D is also locally spanned

by

δ

δxα
= Cβ

α Eβ , α ∈ {1, . . . , p}.

Thus (1.6) becomes

δ

δxα
=

∂

∂xα
− Di

α

∂

∂yi , α ∈ {1, . . . , p}. (1.7)

Moreover, by using (1.4) and (1.7) for two coordinate systems (xα, yi ) and (̃xβ , ỹ j ) with overlapping domains, we
obtain

δ

δxα
=

∂ x̃β

∂xα

∂

∂ x̃β
− Di

α

∂ ỹ j

∂yi

∂

∂ ỹ j =
∂ x̃β

∂xα

δ

δ x̃β
+

(
∂ x̃β

∂xα
D̃ j

β − Di
α

∂ ỹ j

∂yi

)
∂

∂ ỹ j · (1.8)

Hence we obtain (1.5) for the functions Di
α from (1.6) and the δ

δxα given by (1.7) satisfy

δ

δxα
=

∂ x̃β

∂xα

δ

δ x̃β
, α ∈ {1, . . . , p}. (1.9)

Conversely, suppose on the domain of each local chart on M there exist smooth functions Di
α , α ∈ {1, . . . , p},

i ∈ {1, . . . , n}, satisfying (1.5). Then by (1.7) we define
{

δ
δxα

}
, α ∈ {1, . . . , p}, and by using (1.5) in (1.8) we obtain

(1.9). This means that there exists on M a distributionD of rank p which is locally represented by δ
δxα , α ∈ {1, . . . , p},

defined by (1.7). Thus the proof is complete. �

As (1.5) has a tensorial character we can state the following.

Corollary 1.1. There exists a complementary distribution D to DF in T M, if and only if there exists an F(M)-linear
mapping L∗

: Γ (DE ) −→ Γ (DF ).

Next, suppose that M admits an F(M)-bilinear mapping L : Γ (DE ) × Γ (DF ) −→ F(M). Then we put

Lαi = L

(
∂

∂xα
,

∂

∂yi

)
, (1.10)
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and by using (1.4) we deduce that

Lαi =
∂ x̃β

∂xα

∂ ỹ j

∂yi L̃β j , (1.11)

with respect to the coordinate transformations (1.3). Conversely, suppose that on the domain of each local chart on M
there exist np smooth functions Lαi satisfying (1.11) with respect to (1.3). Then we take X ∈ Γ (DE ) and Y ∈ Γ (DF )

and put

(a) X = Xα ∂

∂xα
, (b) Y = Y i ∂

∂yi · (1.12)

By using (1.4) and (1.12) we infer that

Xα ∂ x̃β

∂xα
= X̃β , (b) Y i ∂ ỹ j

∂yi = Ỹ j . (1.13)

Now, we define L : Γ (DE ) × Γ (DF ) −→ F(M) by

L(X, Y ) = Lαi XαY i . (1.14)

By using (1.11) and (1.13) we deduce that (1.14) is invariant with respect to the coordinate transformation (1.3). Thus
the above L is well defined. This discussion enables us to state the following.

Lemma 1.2. There exists an F(M)-bilinear mapping L : Γ (DE ) × Γ (DF ) −→ F(M), if and only if on the domain
of each local chart on M there exist np smooth functions Lαi , α ∈ {1, . . . , p}, i ∈ {1, . . . , n}, satisfying (1.11).

Now, let ki j be the local components of the semi-Riemannian metric k on DF , that is, we have

ki j = k

(
∂

∂yi ,
∂

∂y j

)
, i, j ∈ {1, . . . , n}. (1.15)

Then denote by ki j the entries of the inverse matrix of [ki j ] and by using (1.15) and (1.4b) we infer that

(a) ki j =
∂ ỹh

∂yi

∂ ỹ`

∂y j k̃h`, (b) ki j ∂ ỹh

∂yi

∂ ỹ`

∂y j = k̃h`. (1.16)

Next, suppose D = (Di
α) is a complementary distribution to DF in T M . Then locally, we define the functions

Lαi = D j
α ki j ( f ◦ π)2, (1.17)

and by using (1.5) and (1.16a) we obtain (1.11). Thus by Lemma 1.2 we obtain an F(M)-bilinear mapping
L : Γ (DE )×Γ (DF ) −→ F(M). We call L the ( f, k)-associated mapping to the distributionD. Conversely, suppose
L is given, and by using Lαi we define

Di
α = Lα j ki j 1

( f ◦ π)2 · (1.18)

Then, by using (1.11) and (1.16b), we deduce that the Di
α satisfy (1.5). Thus we obtain a complementary distribution

D to DF in T M , which we call the ( f, k)-associated distribution to L . Thus we can state the following.

Theorem 1.1. The semi-Riemannian metric ( f ◦ π)2k on DF defines, by (1.17) and (1.18), a one-to-one mapping
between the set of complementary distributions to DF in T M and the set of F(M)-bilinear mappings {L}.

Remark 1.1. The ( f, k)-associated distribution D to L is orthogonal to DF with respect to g. Indeed, by using (1.7),
(1.2), (1.10), (1.15) and (1.17) we obtain

g

(
δ

δxα
,

∂

∂yi

)
= L

(
∂

∂xα
,

∂

∂yi

)
− Di

α k

(
∂

∂y j ,
∂

∂yi

)
( f ◦ π)2

= Lαi − D j
α k j i ( f ◦ π)2

= 0.
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Proposition 1.1. Let (E, h) and (F, k) be two semi-Riemannian manifolds, M = E × F, and f a positive smooth
function on E. Then there exists a non-zero F(M)-bilinear mapping L : Γ (DE ) × Γ (DF ) −→ F(M).

Proof. Let za
= (xα, yi ), a ∈ {1, . . . , n + p} be the local coordinates on U ⊂ M . Then define on U the frame field{

Xα, ∂
∂yi

}
where X1 =

∂

∂x1 −
∂

∂y1 , Xα =
∂

∂xα , for α 6= 1. Consider the standard Riemannian metric G on U given by

G(Xα, Xβ) = δαβ , G

(
∂

∂yi ,
∂

∂y j

)
= δi j , G

(
Xα,

∂

∂yi

)
= 0,

and by using the partition of unity on M we extend it to the whole M . Then take the complementary orthogonal
distribution D to DF in T M with respect to G. Clearly, D 6= DE because ∂

∂x1 6∈ Γ (D). Then the ( f, k)-associated
mapping L to D is the mapping we are looking for. �

Now, we are able to prove the existence of g from (1.2).

Theorem 1.2. Let (E, h) be a 1-dimensional manifold with a negative definite metric h, (F, k) a Riemannian manifold
and M = E × F. Suppose that there exists a positive smooth function f on E. Then there exists a non-zero F(M)-
bilinear mapping L : Γ (DE ) × Γ (DF ) −→ F(M) such that M is an oblique warped product (E × F)( f,L) with a
Lorentz metric g given by (1.2).

Proof. By Proposition 1.1 there exists a non-zero L such that g given by (1.2) is a symmetricF(M)-bilinear mapping.
So we only have to prove that g is non-degenerate metric of Lorentz signature. To this end we consider the ( f, k)-
associated distribution D to L . Thus D is a line distribution locally spanned by (see (1.7))

δ

δx1 =
∂

∂x1 − Di
1

∂

∂yi , (1.19)

where (x1, yi ) are local coordinates on M = E × F . Moreover, by Remark 1.1,D is complementary and orthogonal to
DF with respect to g. Now, we examine the restrictions of g to D and DF . First, g is positive definite on DF because
by (1.2) and (1.15) we have

g

(
∂

∂yi ,
∂

∂y j

)
= ki j ( f ◦ π)2,

and k is supposed to be positive definite. Then by using (1.19), (1.2), (1.10) and (1.17), and taking into account that
D and DF are orthogonal, we obtain

g

(
δ

δx1 ,
δ

δx1

)
= g

(
δ

δx1 ,
∂

∂x1

)
= h

(
∂

∂x1 ,
∂

∂x1

)
− Di

1L

(
∂

∂x1 ,
∂

∂yi

)
= h

(
∂

∂x1 ,
∂

∂x1

)
− ki j Di

1 D j
1 ( f ◦ π)2.

Since h is negative definite and k is positive definite, we deduce that g is negative definite on D. Therefore g is a
Lorentz metric on M . �

Corollary 1.2. Let I be an open interval in R endowed with a negative definite metric h, and (F, k) a Riemannian
manifold. Then M = I × F can be equipped with an oblique warped product structure.

Proof. Consider a positive function f on I and the assertion follows from Theorem 1.2. �

Remark 1.2. From the proof of Theorem 1.2 we see that given f, h, k and a non-zero L we can obtain an oblique
warped product structure on M = I × F . This enables us to construct concrete examples of oblique warped products
and, in particular, to introduce in the last section what we call the oblique Robertson–Walker spacetime. �
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Example 1.1. Let E = I and F = Rn be equipped with the negative definite metric h and the Euclidean metric
k = (δi j ), respectively. Take (x1, y1, . . . , yn) as coordinates on M = I × Rn and consider the distribution

D = span
{

δ

δx1 =
∂

∂x1 −
∂

∂y1

}
·

Then it is easy to see that D is complementary to DRn in T M , and according to (1.19) we have Di
1 = δi

1.
Next, we take a positive function f on I and by Theorem 1.1 obtain the non-zero ( f, k)-associated mapping
L : Γ (DI ) × Γ (DRn ) −→ F(M) given by (see (1.17))

L1i = δ1i ( f ◦ π)2.

Thus M becomes an oblique warped product I × Rn
( f,L) whose metric g with respect to the frame field

{
∂

∂x1 , ∂
∂yi

}
is

given by the matrix[
−1 δ1 j ( f ◦ π)2

δi1( f ◦ π)2 δi j ( f ◦ π)2

]
. �

Example 1.2. Let R2(q+1) be the 2(q+1)-dimensional Euclidean space endowed with the canonical complex structure
J . Consider the (2q + 1)-dimensional unit sphere S2q+1 embedded in R2(q+1) and denote by N its unit normal vector
field. Then ξ = J N is a unit vector field that is tangent to S2q+1. Take the local coordinates (x1, y1, . . . , y2q+1) on
M = I × S2q+1 and consider the distribution

D = span
{

δ

δx1 =
∂

∂x1 − ξ i ∂

∂yi

}
,

where (ξ i ), i = {1, . . . , 2q + 1}, are the local components of ξ . Clearly, D is complementary to DS2q+1 and we have
Di

1 = ξ i . Now, take a negative definite metric h on I and consider S2q+1 endowed with the induced Riemannian
metric k = (ki j ). Also, we put ηi = ki jξ

j and obtain a globally defined 1-form η = ηi dyi on S2q+1. Then for any
positive function f on I we obtain the non-zero ( f, k)-associated mapping L given by

L1i = ηi ( f ◦ π)2.

Thus M becomes an oblique warped product with the Lorentz metric g given locally by the matrix[
−1 η j ( f ◦ π)2

ηi ( f ◦ π)2 ki j ( f ◦ π)2

]
. �

Example 1.3. Here we present a generalization of the previous examples. Let F be an n-dimensional Riemannian
manifold which is either non-compact or it is compact and has Euler number χ(F) = 0. Then by Proposition 37 on
p. 149 in O’Neill [4] there exists on F a non-vanishing vector field ξ . From this point we follow the reasoning from
Example 1.2 and obtain oblique warped product structures on M = I × F . In particular, if F is a contact metric
manifold then M = I × F admits oblique warped product structures. �

Any oblique warped product obtained from Example 1.3 will be called a generic oblique warped product (for short,
g.o.w. product). To justify this name we show in the next example that g.o.w. products can be used to construct new
examples of oblique warped products whose semi-Riemannian metrics are not necessarily of Lorentz type.

Example 1.4. Let M = I×F( f,L) be a g.o.w. product with Lorentz metric g = (gAB), A, B ∈ {1, . . . , n+1}. Consider
a (p − 1)-dimensional manifold P endowed with a semi-Riemannian metric h̄ = (h̄ab), a, b ∈ {1, . . . , p − 1}. Take
Q = P × I and define the function f̄ : Q −→ R+ by f̄ (p, t) = f (t), for any (p, t) ∈ Q. Also, we define
L : Γ (DQ) × Γ (DF ) −→ F(Q × F) by:

L(X, Z) = 0 and L(Y, Z) = L(Y, Z),
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for any X ∈ Γ (DP ), Y ∈ Γ (DI ) and Z ∈ Γ (DF ). Then it is easy to see that Q × F( f̄ ,L) is an oblique warped product
whose semi-Riemannian metric has the matrix[

h̄ab 0
0 gAB

]
. �

The above construction of a semi-Riemannian oblique warped product enables us to state the following.

Proposition 1.2. A semi-Riemannian product P × M, where P is a semi-Riemannian manifold and M is a g.o.w.
product, admits oblique warped product structures.

2. The Schouten–Van Kampen and Vrănceanu connections

Let (E, h) and (F, k) be two semi-Riemannian manifolds of dimensions p and n respectively, f a positive smooth
function on E , and L : Γ (DE ) × Γ (DF ) −→ F(M) a non-zero F(M)-bilinear mapping. Suppose that g from
(1.2) is a semi-Riemannian metric on M and therefore M = E × F( f,L) is an oblique warped product. Let D be the
( f, k)-associated distribution to L , which is locally spanned by

{
δ

δxα

}
, α ∈ {1, . . . , p}, given by (1.7).

We study the geometry of an oblique warped product by using the Levi-Civita connection and two other linear
connections which have been used in the study of non-integrable distributions. The presentation of this study is using
both methods: the local coordinates method and the coordinate-free method.

First, we consider the non-holonomic frame field
{

δ
δxα , ∂

∂yi

}
on M , and by using (1.7), (1.2), (1.15) and (1.17) we

obtain

(a) gαβ(x, y) = g

(
δ

δxα
,

δ

δxβ

)
= hαβ(x) − Di

α(x, y)D j
β(x, y)ki j (y) f 2(x),

(b) g′

αi (x, y) = g

(
δ

δxα
,

∂

∂yi

)
= 0,

(c) g̃i j (x, y) = g

(
∂

∂yi ,
∂

∂y j

)
= ki j (y) f 2(x),

(2.1)

where (x, y) = (xα, yi ), (x) = (xα), (y) = (yi ), α ∈ {1, . . . , p}, i ∈ {1, . . . , n}, and

hαβ(x) = h

(
∂

∂xα
,

∂

∂xβ

)
· (2.2)

To develop our study we use the concept of adapted tensor fields on M with respect to the decomposition (see Bejancu
and Farran [1])

T M = D ⊕DF . (2.3)

First, we consider the Levi-Civita connection ∇̃ on (M, g) and according to (2.3) we put

(a) ∇̃ δ

δxβ

δ

δxα
= Fα

γ
β

δ

δxγ
+ Gα

i
β

∂

∂yi ,

(b) ∇̃ δ
δxα

∂

∂yi = H i
γ

α

δ

δxγ
+ K i

j
α

∂

∂y j ,

(c) ∇̃ ∂

∂yi

δ

δxα
= Lα

γ
i

δ

δxγ
+ Mα

j
i

∂

∂y j ,

(d) ∇̃ ∂

∂y j

∂

∂yi = N i
γ

j
δ

δxγ
+ P i

k
j

∂

∂yk ·

(2.4)

Then by direct calculations we deduce that (Gα
i
β), (H i

γ
α), (Lα

γ

i ), (Mα
j
i ) and (N i

γ

j ) define adapted tensor fields,

while (Fα
γ

β), (K i
j
α) and (P i

k
j ) are changed as follows:

Fα
γ

β

∂ x̃ν

∂xγ
= F̃ε

ν
µ

∂ x̃ε

∂xα

∂ x̃µ

∂xβ
+

∂2 x̃ν

∂xα∂xβ
,
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K i
j
α

∂ ỹh

∂y j = K̃ k
h
ε

∂ ỹk

∂yi

∂ x̃ε

∂xα
− Dk

α

∂2 ỹh

∂yk∂yi ,

P i
k

j
∂ ỹh

∂yk = P̃`
h

m
∂ ỹ`

∂yi

∂ ỹm

∂y j +
∂2 ỹh

∂yi∂y j ·

Now, we recall that ∇̃ is a torsion-free metric connection, that is, we have

∇̃X Y − ∇̃Y X = [X, Y ], ∀X, Y ∈ Γ (T M), (2.5)

and

X (g(Y, Z)) = g(∇̃X Y, Z) + g(Y, ∇̃X Z), ∀X, Y, Z ∈ Γ (T M). (2.6)

Lemma 2.1. Let M = E × F( f,L) be an oblique warped product. Then we have the following:

(a)
[

δ

δxα
,

δ

δxβ

]
= I α

i
β

∂

∂yi , where (b) I α
i
β =

δDi
α

δxβ
−

δDi
β

δxα
,

(c)
[

δ

δxα
,

∂

∂yi

]
= Di

j
α

∂

∂y j , where (d) Di
j
α =

∂ D j
α

∂yi ,

(e) Fα
γ

β = Fβ
γ

α, (f) Gβ
i
α − Gα

i
β = I α

i
β , (g) H i

γ
α = Lα

γ
i ,

(h) K i
j
α − Di

j
α = Mα

j
i , (i) H i

γ
α = −gγβ Gβ

j
α k j i ( f ◦ π)2,

(j) N i
γ

j = −gγα Mα
h

i khj ( f ◦ π)2
= N j

γ
i , (k) P i

k
j = P j

k
i ,

(2.7)

where gγα are the entries of the inverse matrix of [gαβ ].

Proof. By direct calculations using (1.7) we obtain (2.7a) and (2.7c). Next, both (2.7e) and (2.7f) are deduced from
(2.5) by using (2.4a) and (2.7a). Similarly, by using (2.4b), (2.4c) and (2.7c) in (2.5) we derive (2.7g) and (2.7h). Now,
by (2.6) and (2.1b) we have

g

(
∇̃ δ

δxα

∂

∂yi ,
δ

δxβ

)
+ g

(
∂

∂yi , ∇̃ δ
δxα

δ

δxβ

)
= 0,

which implies (2.7i) via (2.4a), (2.4b) and (2.1). The first equality in (2.7j) follows in a similar way by using (2.4c)
and (2.4d). Finally, (2.7k) and the second equality in (2.7j) are obtained by using (2.5) and (2.4d). �

Due to (2.7a) we can state the following.

Lemma 2.2. The ( f, k)-associated distribution D on the generalized warped product (M, g) is integrable if and only
if I α

i
β vanish identically on M for all i ∈ {1, . . . , n}, α, β ∈ {1, . . . , p}.

On the other hand, from (2.7f) we deduce that I = (I α
i
β) is an adapted tensor field. Taking into account the above

lemma we call I the integrability tensor of D.
Next, we consider two linear connections on M with respect to which both distributions D and DF are parallel.

They were introduced in the first half of the last century by Schouten and Van Kampen [7] and Vrănceanu [8]
for studying the geometry of a non-holonomic space. In the modern terminology a non-holonomic space is a
manifold endowed with a non-integrable distribution. The coordinate-free expressions for the Schouten–Van Kampen
connection ∇ and the Vrănceanu connection ∇

∗ were given by Ianuş [3] as follows:

∇X Y = V ∇̃X V Y + H ∇̃X HY, (2.8)

and

∇
∗

X Y = V ∇̃V X V Y + H ∇̃H X HY + V [H X, V Y ] + H [V X, HY ], (2.9)
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respectively, for any X, Y ∈ Γ (T M), where H and V are the projection morphisms of Γ (T M) on Γ (D) and Γ (DF )

respectively. By using (2.4), (2.8), (2.9) and (2.7c) we deduce that

(a) ∇ δ

δxβ

δ

δxα
= Fα

γ
β

δ

δxγ
, (b) ∇ δ

δxα

∂

∂yi = K i
j
γ

∂

∂y j ,

(c) ∇ ∂

∂yi

δ

δxα
= Lα

γ
i

δ

δxγ
, (d) ∇ ∂

∂y j

∂

∂yi = P i
k

j
∂

∂yk ,

(2.10)

and

(a) ∇
∗

δ

δxβ

δ

δxα
= Fα

γ
β

δ

δxγ
, (b) ∇

∗
δ

δxα

∂

∂yi = Di
j
α

∂

∂y j ,

(c) ∇
∗
∂

∂yi

δ

δxα
= 0, (d) ∇

∗
∂

∂y j

∂

∂yi = P i
k

j
∂

∂yk ·

(2.11)

By using ∇ and ∇
∗ we can define two types of covariant derivatives for an adapted tensor field on M . Namely, the

horizontal and the vertical covariant derivatives of T =

(
T iα

jβ

)
induced by Schouten–Van Kampen connection are

defined by

T iα
jβ|γ =

δT iα
jβ

δxγ
+ T hα

jβ K h
i
γ +T iε

jβ Fε
α

γ −T iα
hβ K j

h
γ −T iα

jε Fβ
ε
γ , (2.12)

and

T iα
jβ‖k =

∂T iα
jβ

∂yk + T hα
jβ Ph

i
k +T iε

jβ Lε
α

k −T iα
hβ P j

h
k −T iα

jε Lβ
ε

k, (2.13)

respectively.

Similarly, the horizontal and vertical covariant derivatives induced by the Vrănceanu connection are given by

T iα
jβ |

∗ γ
=

δT iα
jβ

δxγ
+ T hα

jβ Dh
i
γ +T iε

jβ Fε
α

γ −T iα
hβ D j

h
γ −T iα

jε Fβ
ε
γ , (2.14)

and

T iα
jβ ‖

∗ k =
∂T iα

jβ

∂yk + T hα
jβ Ph

i
k −T iα

hβ P j
h

k, (2.15)

respectively. It is noteworthy that all these covariant derivatives define adapted tensor fields on M .

Now, we recall that the Levi-Civita connection ∇̃ on (M, g) is given by (cf. O’Neill [4], p.61)

2g(∇̃X Y, Z) = X (g(Y, Z)) + Y (g(Z , X)) − Z(g(X, Y ))

+ g([X, Y ], Z) − g([Y, Z ], X) + g([Z , X ], Y ), (2.16)

for any X, Y, Z ∈ Γ (T M).
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Theorem 2.1. The Levi-Civita connection on an oblique warped product (M = E × F( f,L), g) is completely
determined by the following local coefficients:

(a) Fα
γ

β =
1
2

gγµ

(
δgµα

δxβ
+

δgµβ

δxα
−

δgαβ

δxµ

)
,

(b) Gα
i
β = −

1
2

(
g̃ik gαβ ‖

∗ k + I α
i
β

)
,

(c) K i
j
α =

1
2

g̃ jk
(

g̃ik |
∗ α + 2 Di

h
α g̃hk

)
,

(d) N i
γ

j = −
1
2

gγα g̃i j |
∗ α,

(e) P i
h

j =
1
2

kh`

(
∂k`i

∂y j +
∂k`j

∂yi −
∂ki j

∂y`

)
·

(2.17)

Proof. The main tools for the proof are (2.16), (2.7a), (2.7c), (2.1) and the above covariant derivatives with respect
to Vrănceanu connection. First, we take X =

δ
δxβ , Y =

δ
δxα , Z =

δ
δxµ in (2.16) and by using (2.7a) and the first

equality in (2.1a) we obtain (2.17a). If we take the same X, Y but Z =
∂

∂y j , then (2.16) yields (2.17b) via (2.1a),
(2.1b), (2.7a) and (2.15). The other three formulas are obtained in a similar way. Finally, by using (2.7g), (2.7h) and
(2.7i) we deduce that the coefficients in (2.17) completely determine ∇̃. �

Lemma 2.3. (i) The vertical covariant derivatives of gi j and gαβ with respect to the Schouten–Van Kampen
connection and Vrănceanu connection are given by

(a) g̃i j‖k = 0, (b) gαβ‖k = 0, (2.18)

(a) g̃i j ‖
∗ k = 0, (b) gαβ ‖

∗ k =
1
2

g̃ki

(
Gα

i
β + Gβ

i
α

)
, (2.19)

respectively.
(ii) The horizontal covariant derivatives of gi j and gαβ with respect to Schouten–Van Kampen connection and

Vrănceanu connection are given by

(a) g̃i j |γ = 0, (b) gαβ|γ = 0, (2.20)

(a) g̃i j |
∗ γ = −2 N i

ε
j gεγ , (b) gαβ |

∗ γ = 0, (2.21)

respectively.

Proof. The main tool in the proof is (2.6). First, (2.18a) and (2.19a) follow from (2.6) on taking X =
∂

∂yk , Y =

∂
∂yi , Z =

∂
∂y j and using (2.1c), (2.4d), (2.13) and (2.15). In a similar way we obtain (2.18b), (2.20) and (2.21b). Next,

(2.19b) follows from (2.17b) on using (2.7f) for the integrability tensor of D. Finally, (2.21a) is a consequence of
(2.17d). �

From (2.18) and (2.20) we see that the Schouten–Van Kampen connection is a metric connection. In contrast,
(2.19b) and (2.21a) show that, in general, the Vrănceanu connection is not a metric connection. We say that ∇

∗ is a
vertical (resp. horizontal) metric connection if we have

gαβ ‖
∗ k = 0 (resp. g̃i j |

∗ γ = 0). (2.22)

To relate this to the geometry of M we recall some special classes of foliations. If all leaves of a foliation are totally
geodesic (resp. totally umbilical) we say that the foliation is totally geodesic (resp. totally umbilical). Now consider
a foliation F on a semi-Riemannian manifold (M, g) and denote by H the transversal distribution to F , that is, H is
the complementary orthogonal distribution to the tangent distribution to F in T M . If each geodesic in (M, g) which
is tangent to H at one point remains tangent for its entire length, we say that g is bundle-like for F (cf. Reinhart [5]).
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Now, denote byFF the foliation with tangent distributionDF and call it the vertical foliation on the oblique warped
product M . Then, from (2.4d) we deduce that FF is totally geodesic if and only if

N i
γ

j = 0, ∀γ ∈ {1, . . . , p}, i, j ∈ {1, . . . , n}. (2.23)

Finally, according to Reinhart [6], p.156, we deduce that g is bundle-like for FF if and only if

∂gαβ

∂yk = 0, ∀α, β ∈ {1, . . . , p}, k ∈ {1, . . . , n}. (2.24)

Now, we can prove the following.

Theorem 2.2. Let (M = E × F( f,L), g) be an oblique warped product and FF be the vertical foliation on M. Then
we have the assertions:

(i) g is bundle-like for FF if and only if the Vrănceanu connection is a vertical metric connection.
(ii) FF is totally geodesic if and only if the Vrănceanu connection is a horizontal metric connection.

Proof. By the definition of the vertical covariant derivative with respect to Vrănceanu connection (see (2.15)) we
deduce that

gαβ ‖
∗ k =

∂gαβ

∂yk · (2.25)

Then the assertion (i) follows by using (2.25), (2.24) and (2.22). The assertion (ii) is a consequence of
(2.21)–(2.23). �

Corollary 2.1. The vertical foliation on an oblique warped product is totally geodesic with bundle-like metric if and
only if the Vrănceanu connection is a metric connection.

We denote also by k the lift of the semi-Riemannian metric k from F to DF . Then we say that k is horizontal
Vrănceanu parallel if we have

ki j |
∗ γ = 0, ∀γ ∈ {1, . . . , p}, i, j ∈ {1, . . . , n}. (2.26)

Proposition 2.1. If k is horizontal Vrănceanu parallel then the vertical foliation FF is totally umbilical.

Proof. By using (2.1c) we obtain

g̃i j |
∗ γ = ki j |

∗ γ ( f ◦ π)2
+ 2ki j f

∂ f

∂xγ
·

Then, taking into account (2.26) and (2.21a), we deduce that

N i
ε

j = −ki j f gεγ ∂ f

∂xγ
,

that is, FF is totally umbilical. �

Next, we denote by T and T ∗ the torsion tensor fields of ∇ and ∇
∗ respectively. Then we have

T (X, Y ) = ∇X Y − ∇Y X − [X, Y ], ∀X, Y ∈ Γ (T M), (2.27)

and a similar formula for T ∗. Now we put

(a) T

(
δ

δxβ
,

δ

δxα

)
= T α

γ
β

δ

δxγ
+ T α

i
β

∂

∂yi ,

(b) T

(
δ

δxα
,

∂

∂yi

)
= T i

γ
α

δ

δxβ
+ T i

j
α

∂

∂y j , (c) T

(
∂

∂y j ,
∂

∂yi

)
= T i

γ
j

δ

δxγ
+ T i

k
j

∂

∂yk ·

(2.28)

The local components of T ∗ are defined in the same way as above, but they will have a star.



1066 A. Bejancu / Journal of Geometry and Physics 57 (2007) 1055–1073

Lemma 2.4. (i) The local components of the torsion tensor field of the Schouten–Van Kampen connection are given
by

(a) T α
γ

β = 0, (b) T α
i
β = I α

i
β , (c) T i

γ
α = − Lα

γ
i ,

(d) T i
j
α = Mα

j
i , (e) T i

γ
j = 0, (f) T i

k
j = 0.

(2.29)

(ii) The local components of the torsion tensor field of the Vrănceanu connection are given by

(a) T ∗
α

γ
β = 0, (b) T ∗

α
i
β = I α

i
β , (c) T ∗

i
γ

α = 0,

(d) T ∗

i
j
α = 0, (e) T ∗

i
γ

j = 0, (f) T ∗

i
k

j = 0.
(2.30)

Proof. First, by using (2.27), (2.10a), (2.7a) and (2.7e) we obtain

T

(
δ

δxβ
,

δ

δxα

)
= I α

i
β

∂

∂yi ,

which implies both (2.29a) and (2.29b). Next, we use (2.28), (2.10b), (2.10c), (2.7c), (2.7h), and deduce that

T

(
δ

δxα
,

∂

∂yi

)
= Mα

j
i

∂

∂y j − Lα
γ

i
δ

δxγ
,

which yields (2.29c) and (2.29d) via (2.28b). Finally, (2.29e) and (2.29f) follow from (2.26) by using (2.10d) and
(2.28c). This completes the proof of assertion (i). The assertion (ii) is proved in a similar way. �

By combining Lemma 2.2 with the assertion (ii) of Lemma 2.4 we obtain the following.

Corollary 2.2. The ( f, k)-associated distribution on an oblique warped product is integrable if and only if the
Vrănceanu connection is torsion-free.

From the assertion (i) of Lemma 2.4 we see that the Schouten–Van Kampen connection is far from being torsion-
free. To see the structure of the manifold M in this case we give the following definition. We say that the oblique
warped product (M, g) is a locally semi-Riemannian product if the ( f, k)-associated distribution D is integrable and
the foliations tangent to D and DF are totally geodesic. Now we prove the following.

Theorem 2.3. Let (M, g) be an oblique warped product. Then the following assertions are equivalent:

(i) M is a locally semi-Riemannian product.
(ii) The Schouten–Van Kampen connection is torsion-free.

(iii) The Schouten–Van Kampen and Vrănceanu connections coincide.

Proof. (i) H⇒ (ii). Since D is integrable, by Lemma 2.2 and (2.29b) we deduce that T α
i
β = 0. Taking into account

that the leaves of both distributions D and DF are totally geodesic immersed in (M, g), from (2.4a) and (2.4d) we
obtain Gα

i
β = 0 and N i

γ

j = 0, for all i, j ∈ {1, . . . , n} and α, β, γ ∈ {1, . . . , p}. Then (2.7g), (2.7i) and (2.7j)

imply Lα
γ

i = 0 and Mα
j
i = 0. Thus by (2.29c) and (2.29d) we infer that T i

γ
α = 0 and T i

j
α = 0. Hence the

Schouten–Van Kampen connection is torsion-free.
(ii) H⇒ (iii). Since ∇ is torsion-free, from (2.29c) and (2.29d) we obtain Lα

γ

i = 0 and Mα
j
i = 0. Then (2.10b)

and (2.10c) become

∇ δ
δxα

∂

∂yi = Di
j
α

∂

∂y j and ∇ ∂

∂yi

δ

δxα
= 0, (2.31)

respectively, via (2.7h). Finally, we compare (2.10) and (2.11) taking into account (2.31) and obtain ∇ = ∇
∗.

(iii) H⇒ (i). If ∇ = ∇
∗, then from (2.10) and (2.11) by using (2.7h) we obtain Lα

γ

i = 0 and Mα
j
i = 0. Then

(2.7g), (2.7i) and (2.7j) imply I α
i
β = 0, Gα

i
β = 0 and N i

γ

j = 0. Thus D is integrable and the leaves of D and DF
are totally geodesic immersed in (M, g). This completes the proof of the theorem. �

Remark 2.1. Any of the above assertions is true if and only if ∇ = ∇
∗

= ∇̃. Indeed, if (ii) is true then ∇ is torsion-
free and it is a metrical connection. So by the uniqueness of the Levi-Civita connection we have ∇ = ∇̃. Conversely,
if ∇ = ∇̃, then ∇ should be torsion-free, so (ii) is satisfied. �
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3. Curvature of an oblique warped product

Let ∇̃ and ∇ be the Levi-Civita and Schouten–Van Kampen connections on the oblique warped product (M =

E × F( f,L), g). Then by using (2.8) and taking into account the decomposition (2.3) we put

∇̃X V Y = ∇X V Y + B(X, V Y ), (3.1)

and

∇̃X HY = B ′(X, HY ) + ∇X HY, (3.2)

for any X, Y ∈ Γ (T M), where B and B ′ are given by

(a) B(X, V Y ) = H ∇̃X V Y and (b) B ′(X, HY ) = V ∇̃X HY. (3.3)

By using (3.1)–(3.3) and (2.6) we obtain

g(B(X, V Y ), H Z) + g(B ′(X, H Z), V Y ) = 0, (3.4)

for any X, Y, Z ∈ Γ (T M).
The Schouten–Van Kampen connection enables us to define some covariant derivatives for B and B ′ as follows:

(∇X B)(Y, V Z) = ∇X (B(Y, V Z)) − B(∇X Y, V Z) − B(Y, ∇X V Z), (3.5)

and

(∇X B ′)(Y, H Z) = ∇X (B ′(Y, H Z)) − B ′(∇X Y, H Z) − B ′(Y, ∇X H Z), (3.6)

for any X, Y, Z ∈ Γ (T M). Now, we denote by R and R̃ the curvature tensor fields of ∇ and ∇̃ and state the following.

Theorem 3.1. The curvature tensor fields of the Levi-Civita and Schouten–Van Kampen connections satisfy the
following equations:

g(R̃(X, Y )V Z , V U ) = g(R(X, Y )V Z , V U ) + g(B(X, V Z), B(Y, V U )) − g(B(Y, V Z), B(X, V U )), (3.7)

g(R̃(X, Y )V Z , HU ) = g((∇X B)(Y, V Z) − (∇Y B)(X, V Z), HU ) + g(B(T (X, Y ), V Z), HU ), (3.8)

g(R̃(X, Y )H Z , HU ) = g(R(X, Y )H Z , HU ) + g(B ′(X, H Z), B ′(Y, HU ))

− g(B ′(Y, H Z), B ′(X, HU )), (3.9)

g(R̃(X, Y )H Z , V U ) = g((∇X B ′)(Y, H Z) − (∇Y B ′)(X, H Z), V U ) + g(B ′(T (X, Y ), H Z), V U ), (3.10)

for any X, Y, Z ∈ Γ (T M), where T is the torsion field of ∇.

Proof. By using (3.1) and (3.2) we obtain

∇̃X ∇̃Y V Z = ∇X∇Y V Z + B(X, ∇Y V Z) + B ′(X, B(Y, V Z)) + ∇X (B(Y, V Z)). (3.11)

On the other hand, (3.1) and (2.27) imply

∇̃[X,Y ]V Z = ∇[X,Y ]V Z + B(∇X Y, V Z) − B(∇Y X, V Z) − B(T (X, Y ), V Z). (3.12)

Thus by using (3.11), (3.12) and (3.5) we deduce that

R̃(X, Y )V Z = [∇̃X , ∇̃Y ]V Z − ∇̃[X,Y ]V Z

= {R(X, Y )V Z + B ′(X, B(Y, V Z)) − B ′(Y, B(X, V Z))}

+ {(∇X B)(Y, V Z) − (∇Y B)(X, V Z) + B(T (X, Y ), V Z)}. (3.13)

Now, we take the D- and DF -components in (3.13) and obtain (3.8) and

g(R̃(X, Y )V Z , V U ) = g(R(X, Y )V Z , V U ) + g(B ′(X, B(Y, V Z)) − B ′(Y, B(X, V Z)), V U ). (3.14)

Finally, by using (3.4) in (3.14) we obtain (3.7). By similar calculations we obtain (3.9) and (3.10). �
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It is important to note that (3.8) and (3.10) are equivalent. This follows by direct calculations using (3.4) and
properties of R̃. As the study of the geometry of the foliation FF reduces in many respects to the geometry of its
leaves, we concentrate our attention on the ( f, k)-associate distribution D. Let z ∈ M and W be a 2-dimensional
subspace of Dz which we call a D-plane. Take a basis {u, v} of W and define

1(u, v) = g(u, u)g(v, v) − g(u, v)2.

Then W is non-degenerate if and only if 1(u, v) 6= 0. Next, we define the number

K (u, v) =
g(R(u, v)v, u)

1(u, v)
, (3.15)

provided W is non-degenerate. Taking into account that the Schouten–Van Kampen connection is a metric connection
we deduce that K (u, v) given by (3.15) is independent of the basis {u, v}. Then we denote it by K (W ) and call it the
Schouten–Van Kampen sectional curvature of D at z with respect to the non-degenerate D-plane W .

Example 3.1. Let I × S3
( f,L) be the g.o.w. product obtained for q = 1 in Example 1.2. Then by the method we

developed in Example 1.4 we obtain oblique warped product structures on M = I 2
× S3. Here we describe explicitly

one of these structures and calculate the Schouten–Van Kampen sectional curvature of the distribution D. To this end
we take (xα, yi ) as local coordinates on M , where (xα), α ∈ {1, 2}, and (yi ), i ∈ {1, 2, 3}, are coordinates on I 2

and S3, respectively. Then we consider on M the metric g which, with respect to the natural frame field
{

∂
∂xα , ∂

∂yi

}
is

given by the matrix f (x2) 0 0
0 −1 η j ( f ◦ π)2

0 ηi ( f ◦ π)2 ki j ( f ◦ π)2

 .

Thus we have

L1i = 0 and L2i = ηi ( f ◦ π)2,

which via (1.18) yield

Di
1 = 0 and Di

2 = ξ i .

Then by (1.7) we deduce that the orthogonal complementary distribution D to DS3 in T M is locally spanned by{
δ

δx1 =
∂

∂x1 ,
δ

δx2 =
∂

∂x2 − ξ i ∂

∂yi

}
.

Next, by using (2.1a) and taking into account that ξ = (ξ i ) is a unit vector field on S3, we obtain

[gαβ ] =

[
f (x2) 0

0 −(1 + f 2(x2))

]
.

Then by direct calculations using (2.10a) and (2.17a) we deduce that

∇ δ

δx1

δ

δx2 = ∇ δ

δx2

δ

δx1 =
f ′

2 f

δ

δx1 ,

∇ δ

δx1

δ

δx1 =
f ′

2(1 + f 2)

δ

δx2 ,

∇ δ

δx2

δ

δx2 =
f f ′

1 + f 2

δ

δx2 ·

Taking into account that[
δ

δx1 ,
δ

δx2

]
= 0,
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and by using the above formulas for the Schouten–Van Kampen connection we obtain

R

(
δ

δx1 ,
δ

δx2

)
δ

δx1 =
( f ′)2(1 + 3 f 2) − 2 f f ′′(1 + f 2)

4 f (1 + f 2)2

δ

δx2 ·

Finally, we have

∆
(

δ

δx1 ,
δ

δx2

)
= − f (1 + f 2),

and by using (3.15) we deduce that

K

(
δ

δx1 ,
δ

δx2

)
=

( f ′)2(1 + 3 f 2) − 2 f f ′′(1 + f 2)

4 f 2(1 + f 2)2 ·

For any f with f ′′ < 0 we obtain a large class of oblique warped products with positive Schouten–Van Kampen
sectional curvatures for the ( f, k)-associated distributions. �

To define a sectional curvature of D with respect to Vrănceanu connection ∇
∗ we need a study of its curvature

tensor field R∗. This is because ∇
∗, in general, is not a metric connection (see Corollary 2.1). First, we observe that

Gα
i
β from (2.4a) are the local components for

B ′
: Γ (D) × Γ (D) −→ Γ (DF ) : B ′(H X, HY ) = V ∇̃H X HY. (3.16)

Then by (2.19) and the assertion (i) of Theorem 2.2 we deduce the following.

Theorem 3.2. The semi-Riemannian metric g on the oblique warped product M is bundle-like for the vertical foliation
FF if and only if we have

B ′(H X, HY ) + B ′(HY, H X) = 0, ∀X, Y ∈ Γ (T M). (3.17)

Also, we prove the following.

Lemma 3.1. Let (M, g) be an oblique warped product where g is bundle-like for FF . Then the curvature tensor fields
R and R∗ satisfy the identity

R(H X, HY )H Z = R∗(H X, HY )H Z − 2B(H Z , B ′(H X, HY )), (3.18)

for any X, Y, Z ∈ Γ (T M).

Proof. By using (2.8), (2.9) and (3.3a) we deduce that

∇X H Z = ∇
∗

X H Z + B(H Z , V X), ∀X, Z ∈ Γ (T M). (3.19)

Then by direct calculations using (3.19) we obtain

R(H X, HY )H Z = R∗(H X, HY )H Z − B(H Z , V [H X, HY ]). (3.20)

Next, by using (2.5), (3.3b) and (3.17), we infer that

V [H X, HY ] = V ∇̃H X HY − V ∇̃HY H X = 2B ′(H X, HY ). (3.21)

Thus (3.18) follows from (3.20) by using (3.21). �

Lemma 3.2. Let (M, g) as in Lemma 3.1. Then the curvature tensor field of Vrănceanu connection satisfies the
identity

g(R∗(H X, HY )H Z , HU ) + g(R∗(H X, HY )HU, H Z) = 0, (3.22)

for any X, Y, Z , U ∈ Γ (T M).
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Proof. By using (3.18) and (3.4) we obtain

g(R(H X, HY )H Z , HU ) = g(R∗(H X, HY )H Z , HU ) + 2g(B ′(H Z , HU ), B ′(H X, HY )). (3.23)

Taking into account that R satisfies such an identity (3.22) (since ∇ is a metric connection), and by using (3.17) in
(3.23) we obtain (3.22). �

By using properties of R∗ (including (3.22)) we define the Vrănceanu sectional curvature K ∗(W ) of D at z with
respect to the non-degenerate D-plane W by (3.15), but with R∗ instead of R. Similarly, we have K̃ (W ) given by
(3.15), but with R̃ instead of R. These sectional curvatures are related as follows.

Theorem 3.3. Let (M, g) be an oblique warped product, where g is bundle-like for FF . Then the Schouten–Van
Kampen, Vrănceanu and Levi-Civita sectional curvatures of the ( f, k)-associated distribution D are related by

3K (W ) = 2K̃ (W ) + K ∗(W ), (3.24)

for any non-degenerate D-plane W .

Proof. Let {H X, HY } be a basis of W . Then by using (3.9) and (3.17) we obtain

g(R̃(H X, HY )HY, H X) = g(R(H X, HY )HY, H X) − g(B ′(H X, HY ), B ′(H X, HY )),

which implies

K̃ (W ) = K (W ) −
g(B ′(H X, HY ), B ′(H X, HY ))

∆(H X, HY )
· (3.25)

On the other hand, by using (3.18), (3.4) and (3.17) we deduce that

g(R(H X, HY )HY, H X) = g(R∗(H X, HY )HY, H X) − 2g(B ′(H X, HY ), B ′(H X, HY )),

which yields

K (W ) = K ∗(W ) − 2
g(B ′(H X, HY ), B ′(H X, HY ))

∆(H X, HY )
· (3.26)

Thus (3.24) follows from (3.25) and (3.26). �

Corollary 3.1. Let (M, g) be an oblique warped product, where g is a Riemannian metric that is bundle-like for FF .
Then we have

K̃ (W ) ≤ K (W ) ≤ K ∗(W ). (3.27)

Proof. In this case we have

∆(H X, HY ) > 0 and g(B ′(H X, HY ), B ′(H X, HY )) ≥ 0.

Then (3.27) follows from (3.25) and (3.26). �

In particular, when the ambient manifold (M, g) is of non-negative sectional curvatures, then both the
Schouten–Van Kampen and Vrănceanu sectional curvatures are non-negative too.

4. Oblique Robertson–Walker spacetime

As is well known, the standard models of the universe are warped products. They are the simplest models of
neighborhoods of stars and black holes. According to the theory we developed in this paper we may think of
generalizations of these models. Here we present such a generalization for the Robertson–Walker spacetime.

Let M = I × S, where I is an open interval in R and S is a connected 3-dimensional manifold. Choose the
coordinates (t, y1, y2, y3), where t is the parameter on I and (y1, y2, y3) are the local coordinates on S. Then U =

∂
∂t

gives the velocity of each galaxy γy(t) = (t, y), where y ∈ S, and
{

∂
∂yi

}
, i ∈ {1, 2, 3}, is the natural frame field on S.

The standard Robertson–Walker model was obtained by imposing some assumptions on the galactic flow. Following
O’Neill [4], p. 342 we present them here:
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(a) The semi-Riemannian metric g on M satisfies

g(U, U ) = −1.

(b) For any t ∈ I , each slice S(t) = {t} × S has U as normal vector. In other words, the leaves I × {y} and fibres
{t} × S must be orthogonal with respect to g.

(c) The isotropy condition “all spatial directions the same” stated as follows: Each (t, y) has a neighborhood V in M ,
such that given unit tangent vectors v, v′ to S(t) at (t, y), there is a galaxy-preserving isometry ϕ = id × ϕ|S such
that dϕ(v) = v′.

It follows that S must be a Riemannian manifold of constant curvature c = −1, 0 or 1. Then the warped product

M(c, f ) = I × f S,

where f is a positive smooth function on I , is called a Robertson–Walker spacetime (cf. O’Neill [4], p. 343).
Now, we follow the above ideas, but we omit the condition (b). Therefore the leaves and fibres of M = I × S are

no longer orthogonal with respect to g. In other words, taking into account the notation from this paper we have the
following geometric objects: a negative definite metric h on I , a Riemannian metric k on S, a positive smooth function
f on I and a non-zero F(M)-bilinear mapping L : Γ (DI ) × Γ (DS) −→ F(M), such that g given by (see (1.2))

g(X, Y ) = h(PI X, PI Y ) + ( f ◦ π)2k(PS X, PSY ) + L(PI X, PSY ) + L(PI Y, PS X), (4.1)

is a Lorentz metric on M . By Theorem 1.2, given f, h, k, there exists L 6= 0 such that g is a Lorentz metric on M . As
the condition (c) still holds, the fibres S(t) are of constant curvature c = −1, 0 or 1. Thus the oblique warped product

M(c, f, L) = I × S( f,L),

is called an oblique Robertson–Walker spacetime. It is important to note that in this case, the ( f, k)-associated
distribution D, being of rank 1, is integrable. Denote by F the foliation tangent to D. Then we state the following.

Proposition 4.1. Let (M(c, f, L), g) be an oblique Robertson–Walker spacetime such that g is bundle-like for the
vertical foliation FS (the foliation by fibres S(t), t ∈ I ). Then the foliation F is totally geodesic.

Proof. In this case (2.19b) becomes

g11 ‖
∗ k = g̃ki G

i
11. (4.2)

Then by assertion (i) of Theorem 2.2 and (4.2) we deduce that Gi
11 = 0, i ∈ {1, 2, 3}. Hence the assertion follows

from (2.4a). �

Remark 4.1. Here, and in the following formulas we use the general theory from previous sections but all Greek
indices are equal to 1, and i, j, k, . . . ∈ {1, 2, 3}. �

Next, by using (1.7), (1.18) and (1.10) we deduce that the ( f, k)-associated distribution D is given by

δ

δt
=

∂

∂t
− Di

1
∂

∂yi , (4.3)

where the Di
1 are given by

Di
1 = L1 j k

j i 1

( f ◦ π)2 , L1 j = g

(
∂

∂t
,

∂

∂y j

)
.

Thus the local components of the Lorentz metric g with respect to the semi-holonomic frame field
{

δ
δt ,

∂
∂yi

}
become

(see (2.1))

(a) g11(t, y) = −1 − Di
1 D j

1 ki j (y) f 2(t), (b) g′

1i = 0, (c) g̃i j (t, y) = ki j (y) f 2(t). (4.4)

According to the study we developed in Section 2, we may state the following (see Theorem 2.2 and Proposition 2.1).
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Theorem 4.1. The vertical foliation on an oblique Robertson–Walker spacetime is totally geodesic if and only if the
Vrănceanu connection is a horizontal metric connection.

Proposition 4.2. If the lift of the Riemannian metric k from S to I × S is horizontal Vrănceanu parallel then the
vertical foliation on an oblique Robertson–Walker spacetime is totally umbilical.

Next, for some standard choices of S we can construct oblique warped product structures on I × S by the general
method described in Example 1.3. Thus when we take the unit sphere S3 as S, we can consider on I × S3 the oblique
warped product structure presented in Example 1.2. The same construction applies to R3 and to the hyperbolic space
H3 as well. For all these cases we have

Di
1 = ξ i , (4.5)

where (ξ i ) are the local components of a unit vector field ξ on S. Thus (4.4) becomes

(a) g11(t) = −1 − f 2(t), (b) g′

1i = 0, (c) g̃i j (t, y) = f 2(t)ki j (y). (4.6)

Hence we have

(a) g11(t) = −
1

1 + f 2(t)
, (b) g̃i j (t, y) =

1

f 2(t)
ki j (y). (4.7)

Then by using the vertical covariant derivative induced by the Vrănceanu connection (see (2.15)) we obtain

g11‖
∗ k = 0, ∀k ∈ {1, 2, 3}. (4.8)

Proposition 4.3. The ( f, k)-associated distribution D determined by (4.5) on the oblique Robertson–Walker
spacetime I × S( f,L) is totally geodesic.

Proof. Taking into account thatD is integrable, that is, I 1
i
1 = 0, i = {1, 2, 3}, and by using (4.8) in (2.17b) we obtain

G1
i
1 = 0, i ∈ {1, 2, 3}. Thus the assertion follows from (2.4a). �

Now, by using (2.7d) and (4.5) we deduce that

Di
j
1 =

∂ξ j

∂yi = ξ j
|i − ξ k Pk

j
i , (4.9)

where the covariant derivative is taken with respect to the Levi-Civita connection on S. Then by direct calculations
using (2.14), (4.6), (4.9) and (2.19a) we obtain

g̃i j |
∗ 1 =

δg̃i j

δt
− g̃hj Di

h
1 −g̃ih D j

h
1 =

∂ g̃i j

∂t
− ξ k ∂ g̃i j

∂yk − g̃hj (ξ
h
|i − ξ k Pk

h
i ) − g̃ih(ξh

| j − ξ k Pk
h

j )

= 2 f (t) f ′(t)ki j (y) − f 2(t){khiξ
h
| j + khjξ

h
|i }. (4.10)

Proposition 4.4. The foliation determined by fibres of the oblique Robertson–Walker spacetime I × S3
( f,L) given by

(4.5) is totally umbilical.

Proof. First, we note that ξ is a Killing vector field on S3 (cf. Yano and Kon [9], p. 275), that is, we have

khiξ
h
| j + khjξ

h
|i = 0.

Thus (4.10) becomes

g̃i j |
∗ 1 = 2 f (t) f ′(t)ki j (y).

Then from (2.17d) we deduce that

N i
1

j = −
f (t) f ′(t)

1 + f 2(t)
ki j (y).
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Finally, our assertion follows from (2.4d), since N i
1

j are the local components of the second fundamental forms of

the fibres S3(t). �

The properties stated in Propositions 4.3 and 4.4 say that the geometry of an oblique Robertson–Walker spacetime
is still close to what is known for the usual Robertson–Walker spacetime. More results on both the geometry and
physics of an oblique Robertson–Walker spacetime will appear in a forthcoming paper.
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